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Motivation [Stewart 2009]

Crossing a river with a goat, a cabbage and a wolf..
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Motivation [Stewart 2009]

geometric representation of its 2 solutions (7 moves each)
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Geometric Time-Integration
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Outline

1 Introduction

2 Calculus of Variations, Basics

3 Variational Integrators, Basics

4 Variational Integrators, Selected Topics
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(Non-exhaustive) Review of Variational Methods

1909 Ritz: Über eine neue Methode zur Lösung
gewisser Variationsprobleme der
mathematischen Physik

1970 Cadzow: Discrete Calculus of Variations

2000 Marsden: Discrete Mechanics and Variational

Integrators

2016 Desbrun, Lew, Murphey, Leyendecker,
Ober-Blöbaum

Not exactly in the field of VIs but closely related are Simo &
Gonzalez, Wanner & Hairer & Lubich, Reich, Betsch,
Owren, Celledoni.
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Technical Terms

scalar function R→ R y(x) = x2

scalar field R
n → R y(x) = x2

1 + x2
2

functional D→ R S [x(t)] =
tb∫

ta

√

x ′1(t)2 + x ′2(t)2 dt

vector field R
n → R

m y(x) =

[

x2
1 + x2

2

x2
1 − x2

2

]

operator D→ D D[y(x)] = dy
dx
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Directional Derivatives

recalling analysis for scalar functions and scalar fields

y(x) dy
dx

= lim
ε→0

y(x+ε)−y(x)
ε

y(x) = x2 dy
dx

= 2x

x0 = 2 ;
dy
dx

∣
∣
∣
x0

= 4

y(x) dy
dn

= lim
ε→0

y(x+εn)−y(x)
ε

y(x) = x2
1 + x2

2
dy
dn

=

[

2x1

2x2

]

·

[

n1

n2

]

x0 =

[

1
1

]

, n0 =

[

1
0

]

;
dy
dn

∣
∣
∣
x0,n0

= 2
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Directional Derivatives

variations are directional derivatives of functionals

J [y(x)] δJ [y, η] = lim
ε→0

J [y(x)+εη(x)]−J [y(x)]
ε

J [y(x)] =

π
2∫

0
y(x)2 dx δJ [y, η] =

π
2∫

0
2y(x)η(x) dx

y0(x) = sin(x), η0(x) = cos(x)

; δJ [y0, η0] = 1



Variational
Integrators for

Mechanical
Systems

Dominik Kern

Introduction

Basics from
Calculus of
Variations

Variational
Integrators I

conservative systems

forcing and dissipation

holonomic constraints

Variational
Integrators II

higher order integrators

backward error analysis

thermo-mechanical systems

space-continous systems

Summary

11

Technische
Mechanik/Dynamik

Extrema of Functionals

First order necessary conditions for functionals of type

J [y(t), t] =

b∫

a

L
(

t, y(t), y′(t)
)

dt

and admissible perturbations η(a) = η(b) = 0

δJ [y, η] =

b∫

a

Lyη + Ly′η
′ dt = 0

=

b∫

a

Lyη −

(
d

dt
Ly′

)

η dt +
∣
∣Ly′η

∣
∣b

a
= 0

=

b∫

a

(

Lyη −
d

dt
Ly′

)

η dt = 0

are the Euler-Lagrange-equations Ly = d
dt

Ly′ .
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Extrema of Functionals

Remarks

◮ There are a lot of applications in physics and
engineering. The classical problems are Dido’s problem,
Brachystochrone, Catenary, Geodetics, Minimal
surfaces, ...

◮ The evaluation of sufficient conditions (of Legendre and
Jacobi) for extrema of functionals is more involved than
those of functions and skipped here.
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Power of Symmetries [Mahajan 2014]

http://wild.maths.org

Symmetries are not only beautiful, but also provide practical
tools.

example solve the heat equation (selectively) without
calculations.

http://wild.maths.org
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Noether’s Theorem [Levi 2014]

If the Lagrangian is invariant under action of a
one-parameter family of diffeomorphism hs (e.g.
hsq = q + se)

L

(

hsq(t),
d

dt

(

hsq(t)
))

= L
(

q(t), q̇(t)
)

,

then

Lq̇ ·
d

ds

∣
∣
∣
∣
s=0

hsq = constant.

example

L = 1
2(ẋ2

1 + ẋ2
2 )− 1

2c(x2 − x1)2 and hsx = x + s[1, 1]T

;

[

m1ẋ1

m2ẋ2

]

·

[

1
1

]

= ptotal = const.
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Noether’s Theorem [Levi 2014]

sketch of proof

If the Lagrangian is not altered, neither is the action (here
defined by start- and end-position rather than start-position
and -momentum)

S(t1, h
sq1)− S(t0, h

sq0) = S(t1,q1)− S(t0,q0)

After derivation with respect to s

Sq1
︸︷︷︸

Lq̇|t1

·
d

ds

∣
∣
∣
∣
s=0

hsq1 − Sq0
︸︷︷︸

Lq̇|t0

·
d

ds

∣
∣
∣
∣
s=0

hsq0 = 0

Since t1 is arbitrary the expression Lq̇ ·
d
ds

∣
∣
∣
s=0

hsq1 must

remain constant. Only left to show is Sq1
= Lq̇|t1

.
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Noether’s Theorem [Levi 2014]

Let the critical function be parametrized by its end position

q(t) = Q(t, t1,q1)

insert into the action function

S(t1,q1) =

∫ t1

t0

L(Q, Q̇) dt

and differentiate by q1

Sq1
=

∫ t1

t0

LqQq1
+ Lq̇Q̇q1

dt

=

∫ t1

t0

(

Lq −
d

dt
Lq̇

)

Qq1
dt + |Lq̇Qq1

|t1

t0

= Lq̇|t=t1
.
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Chemnitz

..an industrial city with about 250.000 inhabitants (2015).
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Point of Departure

Hamilton’s principle rules the classical mechanics

δ

te∫

tb

L(q, q̇) dt = 0 with L = T (q, q̇)− V (q),

typically used for equations of motion

d

dt

(
∂L

∂q̇

)

−
∂L

∂q
= 0,

which are often nonlinear and solved numerically.

The Lagrangian L(q, q̇) lives on tangent bundle
L : TM → R of the configuration manifold M .
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Point of Departure

Equivalently, the system can be brought into Hamiltonian
form by the Legendre Transformation

H (q,p) = p · q̇ − L.

Due to substitution of variables, presuming ∂2L
∂q̇∂q̇

regular

p(q, q̇) =
∂L

∂q̇
.

The Hamiltonian H (q,p) lives on co-tangent bundle
H : T ∗M → R of the configuration manifold M .

The equations of motions then become

[

q̇

ṗ

]

=

[

0 1
−1 0

] [
∂H
∂q
∂H
∂p

]

.
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Point of Departure

For the simple pendulum

L =
1

2
ϕ̇2 + cosϕ

the equations of motion are either (Lagrangian form)

ϕ̈+ sinϕ = 0,

with ϕ(0) = ϕ0, ϕ̇(0) = ϕ̇0, or (Hamiltonian form)

ϕ̇ = p

ṗ = − sinϕ

with ϕ(0) = ϕ0 p(0) = p0.
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Idea behind Variational Integrators

“Approximate the action instead of the equations of motion”
A.Lew

general advantages

◮ robustness and excellent long-time behavior

◮ symplecticity

◮ backward error analysis
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VI for Conservative Systems
[Marsden 2000]

1 Approximation of the state variables in time

q(t) ≈ qd(t) =
tk+1 − t

h
qk +

t − tk

h
qk+1.

2 Time-step-wise quadrature of the action-integral

∆S =

tk+1∫

tk

L
(
q(t), q̇(t), t

)
dt

≈

tk+1∫

tk

L
(
qd(t), q̇d(t), t

)
dt

≈ hL
(

qd(tk+1/2), q̇
d(tk+1/2), tk+1/2

)

= Ld .

Ld(qk ,qk+1) lives on discrete state space Ld : M ×M → R.
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VI for Conservative Systems
[Marsden 2000]

stationarity condition of the discrete action sum

S ≈ Sd =
N−1∑

k=0

Ld(qk ,qk+1)

yields discrete Euler-Lagrange equations

δSd =
(

(
(

(
(

(
(

(

D1Ld(q0,q1)δq0

+D2Ld(q0,q1)δq1 + D1Ld(q1,q2)δq1

+D2Ld(q1,q2)δq2 + D1Ld(q2,q3)δq2

. . .

+
(

(
(

(
(

(
(

(
(

(

D2Ld(qN−1,qN )δqN = 0.

Di denotes derivative with respect to the i.th argument,
i.e. D1Ld(qk ,qk+1) = ∂Ld

∂qk
, D2Ld(qk ,qk+1) = ∂Ld

∂qk+1
.
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VI for Conservative Systems
[Marsden 2000]

The DEL determine qk , qk−1 ; qk+1 implicitly by

D2Ld(qk−1,qk) + D1Ld(qk ,qk+1) = 0.

On one hand the I.C. q0, q̇0 correspond to the momenta

p0 =
∂L

∂q̇

∣
∣
∣
∣
q0,q̇0

on the other hand the velocity approximation corresponds to

p1/2 =
∂L

∂q̇

∣
∣
∣
∣
q1/2,q̇1/2

correction by the acting forces between t0 . . . t0 + h/2

p0 = D2L(q0, q̇) = −D1Ld(q0,q1) = p1/2 −
h

2

∂L

∂q

∣
∣
∣
∣
q1/2

to be detailed later (discrete Legendre Transform).
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Example

1DoF system (dimensionless), e.g. simple pendulum

L =
1

2
q̇2 − V (q)

with linear approximations for the time step t = 0 . . . h

q ≈ qd =
h − t

h
q0 +

t

h
q1 and q̇ ≈ q̇d =

q1 − q0

h

and trapezoidal rule for quadrature

∫ h

0
L(qd , q̇d) ≈

h

2
L
(
q0, q̇

d
)

+
h

2
L
(
q1, q̇

d
)

= Ld

results in the popular Störmer-Verlet scheme [Verlet1967].

δSd = 0 ;







p0 = q̇d + h
2
∂V
∂q

(q0) ; q1

p1 = q̇d − h
2
∂V
∂q

(q1) ; p1
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Symplecticity
[Arnold 1974]

The obligatory picture is (Vladimir Igorevich) Arnold’s cat

Sets of initial conditions preserve their volumes in phase
space while flowing according to the equations of motion.

Confer with mapping reference configuration → current
configuration in static continuum mechanics.
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Symplecticity

Advantages for numerical simulations

Simulations of a simple pendulum by various methods
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Discrete Legendre Transform
[Lew 2004]

Similarly to the continous case, there is a discrete
momentum definition.

pk = −D1Ld(qk ,qk+1)

pk+1 = D2Ld(qk ,qk+1)

whose continuity is enforced by the DEL.

Hint, express derived quantities, such as velocities or
energies, as functions of qk and pk , instead of evaluating the

approximations qd(t)!
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Discrete Noether Theorem

If there is a one-parameter group hs that leaves

Ld(hsqk , h
sqk+1) = Ld(qk ,qk+1)

invariant, then there is an invariant of the dynamics

I (qk ,pk) = pk ·
d

ds
hsqk = constant.

example: two masses connected by a spring

L = 1
2m(ẋ2 + ẏ2)− 1

2c(y − x)2, hsq = q + [s, s]T

p0 = −D1Ld =

[

m x1−x0

h
− h

2 c(y1/2 − x1/2)

m y1−y0

h
+ h

2 c(y1/2 − x1/2)

]

p1 = D2Ld =

[

m x1−x0

h
+ h

2 c(y1/2 − x1/2)

m y1−y0

h
− h

2 c(y1/2 − x1/2)

]

I = m
x1 − x0

h
+ m

y1 − y0

h
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Forcing and Dissipation
[Marsden 2000]

Discrete Lagrange-D’Alembert principle, derived from
time-continous formulation

δ

te∫

tb

L dt +

te∫

tb

δW nc dt =
N−1∑

k=0

δ

tk+1∫

tk

L dt + +

tk+1∫

tk

δW nc dt = 0

L as before and virtual work of non-conservative forces by

tk+1∫

tk

δW nc dt =

tk+1∫

tk

F(t) · δq(t) dt ≈

tk+1∫

tk

F(t) · δqd(t) dt

≈ hF(tk+1/2) · δq
d(tk+1/2) = F−k δqk + F+

k+1δqk+1.

DEL arranged in position-momentum form

pk = −D1Ld(qk ,qk+1)− F−k (qk ,qk+1)

pk+1 = D2Ld(qk ,qk+1) + F+
k (qk ,qk+1).
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Alternative Approach
[Vujanovic 1988]

For linear systems with damping

ẍ + 2Dẋ + ω2
0x = 0

L =
1

2
(ẋ2 − ω2

0x2)e2Dt ,

or forcing

ẍ + ω2
0x = a cos Ωt

L =
1

2

(

ẋ +
aΩ sin Ωt

ω2
0 − Ω2

)2

−
ω2

0

2

(

x −
a cos Ωt

ω2
0 − Ω2

)2

.

Generally seems the inverse problem of the calculus of
variations to be an interesting approach.
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Geometry of Constraints

Extrema are at points where the gradient of the cost
function is normal to the constraint surface

∇f (x0) = −λ∇φ(x0).

Reactions forces are different from external forces, as the
constraints have to be fulfilled exactly and not only in some

integral sense!
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VI for Constrained Systems
[Marsden 2000]

Basically it works to enforce the constraints on position level
only, better is enforcement on position and momentum level.

Iteration equations enforce constraint φ = 0

0 = pk + D1Ld(qk ,qk+1)− λk∇φ(qk)

0 = φ(qk+1),

while update-equations enforce “hidden” constraint (φ̇ = 0)

pk+1 = D2Ld(qk ,qk+1)− λ̃k+1∇φ(qk+1)

0 = ∇φ(qk+1) ·
∂H

∂p
(qk+1,pk+1).

Alternatively, eliminate the Lagrange-multipliers by the
nullspace method [Betsch2005], for VI [Leyendecker2008].
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Example
[Bruels 2011]

Heavy top Euler-Parameters

Parametrization by Euler-parameters (unit quaternions)

X free of singularities

 additional constraint q2
0 + q2

1 + q2
2 + q2

3 = 1

 mysterious momenta pi = ∂L
∂q̇i

=?
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Example
[Betsch 2006]

Crucial point ist the kinetic energy

T =
1

2
q̇ ·M4q̇,

with the rank-one augmented mass matrix

M4 = 4G(q)T JG(q) + 2tr(J)q ⊗ q,

where G(q) relates to the convective angular velocity

Ω = 2G(q)q̇ q̇ =
1

2
G(q)T Ω.

Potential energy as usual

V = mgez · xs = mgez ·R(q)Xs.
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Example

The VI is compared with the generalized-α method
(h = 10−3s, ρ = 0.9) for the fast spinning heavy top.

total mech. energy ang. mom. Lz ang. mom. L3
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TU Chemnitz

www.panoramio.com

.. a technical university with about 11.000 students (2015).

www.panoramio.com
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Discrete Lagrangian
[Marsden 2000]

1 approximation of the state variables in time

q(t) ≈ qd(t) =
p
∑

n=0

Mn(t)qk+n/p

2 time-step-wise quadrature of the action-integral..

∆S =

tk+1∫

tk

L
(

q(t), q̇(t), t
)

dt

≈

tk+1∫

tk

L
(

qd(t), q̇d(t), t
)

dt

≈
g
∑

m=1

wmL
(

qd(tm), q̇d(tm), tm

)

= Ld



Variational
Integrators for

Mechanical
Systems

Dominik Kern

Introduction

Basics from
Calculus of
Variations

Variational
Integrators I

conservative systems

forcing and dissipation

holonomic constraints

Variational
Integrators II

higher order integrators

backward error analysis

thermo-mechanical systems

space-continous systems

Summary

39

Technische
Mechanik/Dynamik

Forced Discrete Lagrange-D’Alembert-Principle
[Marsden 2000]

..and the virtual work of the nonconservative forces

δW nc =

tk+1∫

tk

F · δq dt ≈

tk+1∫

tk

F · δqd dt

≈
g
∑

m=1

wmF(tm) · δqd(tm) =
p
∑

n=0

Fd
k+n/pδq

d
k+n/p

yield DEL (position-momentum form)

pk = −D1Ld(qk ,qk+1/p . . . ,qk+1)− Fd
k

0 = D2Ld(qk ,qk+1/p . . . ,qk+1) + Fd
k+1/p

. . .

0 = DpLd(qk ,qk+1/p . . . ,qk+1) + Fd

k+ p−1

p

pk+1 = Dp+1Ld(qk ,qk+1/p . . . ,qk+1) + Fd
k+1
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Order Analysis
[Ober-Blöbaum & Saake 2013]

Quadratic polynomial approximation numerically integrated
by different order

Approximation by polynomial of degree p and a quadrature
based on p + 1 points enables the maximal possible order 2p.
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Backward Error Analysis
[Hairer & Wanner & Lubich 2006]

Rather than considering how closely the approximated
trajectories match the exact ones, it is now considered how
closely the discrete Lagrangian (Hamiltonian) matches the
ideal one.

Backward error analysis reveals discrete time paths as exact
solutions of a nearby Hamiltonian

H̃ (q, p) = H (q, p) + hg1(q, p) + h2g2(q, p) + . . .
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Notion of Thermacy
[Helmholtz 1884]

The concept of thermacy, also known as thermal
displacements, gives heat transfer the same mathematical
structure as mechanical motion.

mechanical thermal

gen. coord. x α

gen. vel. v = ẋ ϑ = α̇

Lagrangian L = 1
2mẋ2 L = 1

2
k
ϑr

(α̇ − ϑr)2

gen. momentum p = ∂L
∂ẋ

s = ∂L
∂α̇

eq. of motion d
dt

(
∂L
∂ẋ

)

− ∂L
∂x

= 0 d
dt

(
∂L
∂α̇

)

− ∂L
∂α = 0
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Discrete Model Components
[Romero 2009]

generalized generalized further

positions q momenta p dependencies

position x, y momentum px , py length l(x, y)
thermacy α entropy s temperature ϑ = α̇

int. variable v ∂ψ
∂v̇

= 0 non-equilibrium force ṗv

l, ϑ

elastic stiffness K

thermoelastic coupling β

heat capacity k

v

viscosity η

relaxation time τ = η
2µ

x, y

mass m
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Variational Principle for Thermo-Viscoelasticity
[Maugin 2006]

δ
N−1∑

k=0






tk+1∫

tk

(T − ψ) dt




 +

N−1∑

k=0






tk+1∫

tk

δW nc dt = 0






mass kinetic energy T = 1
2m(ẋ2 + ẏ2)

spring elastic strain energy ψe =
K

2l2
0

(l − l0)2

thermoelastic coupling ψte = −β(ϑ − ϑr)
l − l0

l0

heat capacity ψt = −
k

2ϑr

(ϑ − ϑr)2

heat flux/source δW nc
t = ṡ δα

dash-pot internal dissipation δW nc
v = −Fv δv
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Variational Principle for Thermo-Viscoelasticity
[Maugin 2006]

δ
N−1∑

k=0






tk+1∫

tk

(T − ψ) dt




 +

N−1∑

k=0






tk+1∫

tk

δW nc dt = 0






dependent quantities follow from free energy ψ and internal
energy U via the relations

ψ = U − ϑs U = ψ + ϑs

s = −
∂ψ

∂ϑ
ϑ =

∂U

∂s

Fve =
∂ψ

∂l
total internal force

Fv = −
∂ψ

∂v
viscous internal force



Variational
Integrators for

Mechanical
Systems

Dominik Kern

Introduction

Basics from
Calculus of
Variations

Variational
Integrators I

conservative systems

forcing and dissipation

holonomic constraints

Variational
Integrators II

higher order integrators

backward error analysis

thermo-mechanical systems

space-continous systems

Summary

46

Technische
Mechanik/Dynamik

Thermo-viscoelastic Pendulum
[Garcia-Orden & Romero 2006]

The length of the massless pendulum rod

l =
√

x2 + y2,

evolution equation of the dash-pot

ηv̇ = Fv ,

and the free energy of a thermo-elastic spring

ψe(l, α̇) =
K

2
log2

(
l

l0

)

− β(α̇ − ϑr) log

(
l

l0

)

+k

[

α̇− ϑr − α̇ log

(
α̇

ϑr

)]

.
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Thermo-viscoelastic Pendulum
[Garcia-Orden & Romero 2006]

Free energy of the spring-damper compound (generalized
Maxwell-element)

ψ(l, v, ϑ) = (1 + βc)ψe + µv2 − βcv
∂ψe

∂l
.

The generalized coordinates are q = [x, y, α]T and their
conjugated momenta

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ

s =
∂L

∂α̇
= −

∂ψ

∂α̇
.

time derivatives are obtained from the momenta

ẋ =
∂H

∂x
(q,p), ..., α̇ =

∂U

∂s
(q,p).
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Thermo-viscoelastic Pendulum
[Garcia-Orden & Romero 2006]

Heat transfer (Fourier type, thermal conductivity κ) between
spring and environment

h = −κ(α̇− ϑ∞).

Regarding the dash-pot, it is assumed that all energy
mechanically dissipated is completely converted into heat,
which corresponds to the entropy production

ṡv =
gv̇

α̇
.

Adding the mechanical dissipation up to the previous two
effects

δW nc = −Fvδv +
Fv v̇

α̇
δα− κ

α̇− ϑ∞
α̇

δα.
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Thermo-viscoelastic Pendulum
[Garcia-Orden & Romero 2006]

free motion as example

−2 −1 0 1 2 3 4
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]

x [m]
0 5 10 15 20
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Thermo-viscoelastic Pendulum
[Garcia-Orden & Romero 2006]

comparison with energy-consistent EEM-method

0 2 4 6 8 10 12 14 16 18 20
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Non-standard Heat Transfer
[Green & Naghdi 1991]

For Green & Naghdi type II heat transfer simply add

ψGN2 =
1

2
κII|∇α|

2

to the free energy.

+ Hamiltonian structure fits perfectly in
VI-framework [Mata & Lew 2013]

- low practical relevance

- open questions
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Spatial Discretization

Displacement field in a 3D-continuum element

q(x, t) =






u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)






approximated in space first for u (v, w analogously)

u(x, y, z, t) ≈
∑

N n(x)un(t) = usd(x, t)

u̇(x, y, z, t) ≈
∑

N n(x)u̇n(t) = u̇sd(x, t)

leads as intermediate step to a semidiscrete Lagrangian

L =

∫

V
L̄(u, v,w, u̇, v̇, ẇ) dV

≈

∫

V
L̄(usd, vsd,wsd, u̇sd, v̇sd, ẇsd) dV

≈ Inum
V

(

L̄(usd, . . . , ẇsd)
)

= Lsd

(

u(t), . . . , ẇ(t)
)

.
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Time Discretization

Now the continous system is approximated by discrete one

S =

∫ te

tb

∫

V
L̄(u, v,w, u̇, v̇, ẇ) dV dt

≈

∫ h

0
Lsd(u,v,w, u̇, v̇, ẇ) dt = S sd

VI construction as before, firstly approximation in time..

ud(t) =
p
∑

m=0

Mm(t)um u̇d(t) =
p
∑

m=0

Ṁm(t)um

..secondly, quadrature in time (one step)

S sd ≈

∫ h

0
Lsd(ud ,vd ,wd , u̇d , v̇d , ẇd) dt

≈ Inum
t

(

Lsd(ud , . . . , ẇd)
)

= Ld(u0,u1, . . . ,wp).
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Example for an Elastic Bar

spatial discretization (1 element, linear approximation)

L =
1

2

∫ Le/2

−Le/2

(

̺Au̇(x, t)2 − EAu′(x, t)2
)

dx

≈
1

2

(

u̇e ·Meu̇e − ue ·Keue
)

= Lsd

(

ue(t), u̇e(t)
)

temporal discretization (1 time step, linear approximation)

∆S =

∫ h

0
Lsd

(

ue(t), u̇e(t)
)

dt

≈
1

2

∫ h

0

∆ue

h
·Me ∆ue

h
dt

−
1

2

∫ h

0

(

ue
0 +

t

h
∆ue

)

·Ke

(

ue
0 +

t

h
∆ue

)

dt

≈
h

2

(
∆ue

h
·Me ∆ue

h
−

ue
0 + ue

1

2
·Ke ue

0 + ue
1

2

)

= Ld
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Summary

Retrospect

Variational Integrators for

◮ discrete mechanical, conservative systems;
◮ with forcing and dissipation;
◮ with holonomic constraints.
◮ VIs of higher order,
◮ outline of thermo-mechanical coupling,
◮ and space-continous systems.

Outlook

◮ generalization to optimal control (tomorrow);
◮ non-smooth systems, e.g. collisions, friction;
◮ event-locator, adaptive time-stepping;
◮ electro-mechanical systems, further couplings;
◮ combinations of all of them, i.e. higher order VI, constrained,

space-continous, coupled,...
◮ structure-preserving spatial discretization and model order

reduction.
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